四 PLENE (POLYPROPYLENE COMPOUNDS)

			COMPOUNDS BASED ON POLYPROPYLENE HOMOPOLYMERS												COMPOUNDSBASED ONPOLYPROPYLENECOPOLYMERS		
		GRADES	$\begin{array}{\|l\|} \hline \text { HPC } \\ 1020 \\ \hline \end{array}$	$\begin{array}{l\|} \hline \text { HPC } \\ 1030 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { HPC } \\ & 1040 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HPC } \\ & 1050 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HPT } \\ & 1020 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HPT } \\ & 1030 \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline \text { HPT } \\ 1040 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { HPG } \\ & 1010 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HPG } \\ & 1020 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HPG } \\ & 1030 \end{aligned}$	$\begin{array}{l\|} \hline \text { HPG } \\ 1040 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { HPM } \\ & 1040 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { CPT } \\ & 1020 \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline \text { CPT } \\ 1030 \end{array}$	$\begin{aligned} & \hline \text { CPT } \\ & 1040 \end{aligned}$
PROPERTIES	TEST METHOD	EXTENDER	CaCo_{3}	CaCo_{3}	CaCo_{3}	CaCo_{3}	TALC	TALC	TALC	Glass Fibre	Glass Fibre	Glass Fibre	Glass Fibre	Mica	TALC	TALC	TALC
FILLER	KLJ/QEMS/QC D/WIN-2/002	\%	20 ± 2	30 ± 2	40 ± 2	50 ± 2	20 ± 2	30 ± 2	40 ± 2	10 ± 2	20 ± 2	30 ± 2	40 ± 2	40 ± 2	20 ± 2	30 ± 2	40 ± 2
SPECIFIC GRAVITY	$\begin{aligned} & \text { ASTM } \\ & \text { D } 792 \end{aligned}$	-	1.04	1.12	1.24	1.33	1.04	1.12	1.24	0.98	1.04	1.12	1.24	1.24	1.04	1.12	1.24
MELT FLOW INDEX	$\begin{aligned} & \text { ASTM } \\ & \text { D } 1238 \end{aligned}$	GMS/10MTS @ $230^{\circ} \mathrm{C}$ 2.16 kg load	8-12	8-12	8-12	8-12	8-12	8-12	8-12	5-10	5-10	5-10	5-10	8-10	8-12	8-12	8-12
TENSILE STRENGTH AT BREAK	$\begin{aligned} & \text { ASTM } \\ & \text { D } 638 \end{aligned}$	Mpa	28-30	30-31	31-33	26-28	28-30	30-31	32-34	45-50	51-56	58-65	68-72	24-26	23-25	24-26	25-27
ELONGATION AT BREAK	ASTM D 638	\%	50	50	50	40	30	25	20	5	5	3	2	20	20	15	12
FLEXURAL MODULUS	ASTM D 790	Mpa	2400	2700	3000	3200	2500	2800	3300	2500	3800	4800	6200	4500	2000	2300	2700
HDT at 0.45 Mpa	ASTM D 648	${ }^{\circ} \mathrm{C}$	107	112	115	125	110	115	118	140	150	160	165	135	105	110	112

Note : As per requirement all grades are available in different colours.
Compounds have Good Dimensional Stability, Balance between stiffness and flexibility, Excellent Mechanical Properties.
Compounds are used in Automotive Sector, Appliances, Medical, Engineering, Building, Sports and Other Sectors.
The above properties are indicative and represent the values as tested in our laboratories. There is no guarantee / warranty what-so-ever.
The suitability of the product for particular application may be verified before use.

